Mirror-Descent-like Algorithms for Submodular Optimization

نویسندگان

  • Rishabh Iyer
  • Stefanie Jegelka
  • Jeff Bilmes
چکیده

In this paper we develop a framework of submodular optimization algorithms in line with the mirror-descent style of algorithms for convex optimization. We use the fact that a submodular function has both a subdifferential and a superdifferential, which enables us to formulate algorithms for both submodular minimization and maximization. This reveals a unifying framework for a number of submodular maximization algorithms. In addition, we refine a number of bounds for constrained submodular minimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions

Submodular function minimization is a fundamental optimization problem that arises in several applications in machine learning and computer vision. The problem is known to be solvable in polynomial time, but general purpose algorithms have high running times and are unsuitable for large-scale problems. Recent work have used convex optimization techniques to obtain very practical algorithms for ...

متن کامل

Submodular-Bregman and the Lovász-Bregman Divergences with Applications

We introduce a class of discrete divergences on sets (equivalently binary vectors) that we call the submodular-Bregman divergences. We consider two kinds, defined either from tight modular upper or tight modular lower bounds of a submodular function. We show that the properties of these divergences are analogous to the (standard continuous) Bregman divergence. We demonstrate how they generalize...

متن کامل

Bregman Projections over Submodular Base Polytopes

A well-known computational bottleneck in various first order methods like mirror descent is that of computing a certain Bregman projection. We give a novel algorithm, INC-FIX, for computing these projections under separable mirror maps and more generally for minimizing separable convex functions over submodular base polytopes. For minimizing divergences onto cardinality-based submodular base po...

متن کامل

Submodular-Bregman and the Lovász-Bregman Divergences with Applications: Extended Version

We introduce a class of discrete divergences on sets (equivalently binary vectors)that we call the submodular-Bregman divergences. We consider two kinds ofsubmodular Bregman divergence, defined either from tight modular upper or tightmodular lower bounds of a submodular function. We show that the properties ofthese divergences are analogous to the (standard continuous) Bregman d...

متن کامل

Fastest Rates for Stochastic Mirror Descent Methods

Relative smoothness a notion introduced in [6] and recently rediscovered in [3, 18] generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012